
Will	Corcoran - 00:00

Documentation,	security	testing	and	hardening.	And	there's	a	number	of
things	that.

Will	Corcoran - 00:07

We	can	start	with,	but	I	thought.

Will	Corcoran - 00:11

Maybe	we	would	just	start	with	kind.

Will	Corcoran - 00:13

Of	a	temperature	check.

Will	Corcoran - 00:16

And	this	is	just	meant	to	be.

Will	Corcoran - 00:17

Like,	a	fun	conversation	starter	to	jump	in.	And	if	you	were	to	take,	like.

Will	Corcoran - 00:26

The	blockchain	code	base	and	the	SBTC	code	base,	and	you	had	these	sort
of	ends	of	the	spectrum	dumpster	fire.

Will	Corcoran - 00:34

And	Sistine	Chapel,	something	that	is,	I.

Will	Corcoran - 00:39

Guess,	known	for	its	simplicity	and	elegance,	some	beauty.	Where	in	there
do	people	feel	that.

Will	Corcoran - 00:50

Our	code	bases	line	up	colony?

Jesse	Wiley - 00:56

Because	you're	right	in	my	Kona	vision.

Brice	Dobry - 01:00

All	right,	well,	that's	at	least	I.

Brice	Dobry - 01:03

Get	to	say	the	easy	things	before	anybody	else	does.

Brice	Dobry - 01:08

So	for	the	blockchain	code	base,	I'd.

Brice	Dobry - 01:11

Say	it's	a	mixed	bag	because	I.

Brice	Dobry - 01:13

Think	that	the	code	itself	is	pretty	solid.

Brice	Dobry - 01:20

I'm	happy	with	the	code,	but	the	documentation	is	severely	lacking,
including	comments	in	the	code.

Brice	Dobry - 01:28

So	it	makes	it	difficult	to	learn.

Brice	Dobry - 01:32

As	I've	been	doing	stuff,	I	really	have	found	that	I	have	to	dig	through	the
code	to	find	things	and	trace	through,	like,	oh,	there's	a	thread	doing	this,
and	this	is	how	these	two	are	communicating.	So	that's	the	place	that's
really	lacking.

Brice	Dobry - 01:47

So	as	far	as	documentation,	I'd	give.

Brice	Dobry - 01:50

It	like,	maybe	a	two,	but	for	the	code	itself,	I	would	give	it	like	an	eight	or
something	like	that.	The	SBTC	code	base,	I	don't	have	a	good	feel	on,	so	I
don't.

Brice	Dobry - 02:04

Have	an	opinion	on	that	one.

Will	Corcoran - 02:05

Yeah.

Will	Corcoran - 02:09

I	would	assume	that	the	SBTC.

Will	Corcoran - 02:11

Code	base,	it	hasn't	collected	all	of.

Will	Corcoran - 02:16

The	iterations	that	the	stacks	blockchain	code.

Will	Corcoran - 02:21

Base	has	over	the	years,	and	being.

Will	Corcoran - 02:25

A	bit	fresher	and	a	newer	vintage,	if	you	will,	it's	probably	a	bit.

Will	Corcoran - 02:32

Leaner,	I	would	guess.	I	don't	know	that	for	sure.

Will	Corcoran - 02:37

And	to	your	point	about	documentation,	there's	a	section	that	we're	going
to	have	next,	I	think,	talking	about	documentation,	and	Kenny	Rogers	on
the	call	really	asked	to	be	here.	He's	always	invited,	but	made	a	point,	hey,
I	really	want	to	be	involved	and	get	a	better	sense	of	what's	going	on	in
these	calls.	Documentation	is	part	of	one	of	the	things	that	he	does	with
developer	advocacy.	So	I	think	trying	to	make	an	easy	onboarding
experience	for	anyone	that's	coming	in	and	integrating	themselves	into	the
code.

Will	Corcoran - 03:18

Base	is	like	a	life	and	death.

Will	Corcoran - 03:22

Matter	for	us	because	of	our	ability	to	scale,	our	ability	to	onboard	new
people	in	a	timely	manner,	an	ability	to	get	code	contributions	from	folks
that	as	a	way	to	just	try	out,	essentially	make	themselves	interested	in
joining	core	engineering	or	one	of	the	orgs	is	a	really,	I	think,	successful
way	of	finding	talented,	interested	and	passionate	engineers.

Sarala	B - 03:59

I	would	actually	split	the	documentation	part	into	two	parts.	One,	yes,	the
documentation	that	we're	talking	about	that	is	external	to	the	code	ray
that's	supposed	to	be	helping	onboarding	new	users	new	developers,	that's
an	aid.	But	the	documentation	that	Bryce	is	also	highlighting	is	in	code
documentation	where	even	for	established	engineers	like	Aaron	Bryce,
everyone	else	on	this	call	just	figuring	out	why	something	was	handled	or
designed	the	way	it	was.	That	kind	of	self	contained	documentation	within
code	is	also	something	that	we	could	really	work	on.	Leave	it	better	than
found.

Brice	Dobry - 04:46

It	kind	of	yeah.

Will	Corcoran - 04:50

What's	like	an	actionable	step	that	people	could	take	with	that?	Are	there
examples,	like	within	our	own	code	base	or	another	code	base	that	you've
seen	that	say	this	is	a	good	pattern	to	start	by	following?

Sarala	B - 05:09

We've	seen	a	lot	of	new	improvements	around	this	thanks	to	efforts	by
Aaron	and	Bryce,	again	around	the	time	from	2.1	to	2.4.	Most	of	the	fixes
that	went	in,	if	you	look	at	the	code	now,	there's	clear	documentation	of
why	those	decisions	are	made.	At	least	a	one	liner,	inline	code	comments.	I
think	any	bug	fix,	any	functionality	that	we	add	that	you	find	that	it's
important	for	others	to	know,	just	documenting	that.	I	would	love	to
actually	Bryce	and	Aaron	on	that,	maybe	because	I'm	outside	looking	in
and	I'm	not	as	familiar	with	the	Rust	code	base	itself.	I	don't	know	if	that
resonates	with	the	rest	of	the	engineering	team.

Aaron	Blankstein - 06:00

Aaron	yeah,	I	would	say	it	definitely	all	resonates.

Kenny	Rogers - 06:05

I	think	that.

Aaron	Blankstein - 06:10

Just	speaking	on	comments,	I	think	that	sort	of	the	in	code	comments	that
we're	missing	the	most.

Kenny	Rogers - 06:19

Are	not	so	much	the	what	is	this	code	doing?

Brice	Dobry - 06:25

Because	I	think	that	for	the	most.

Aaron	Blankstein - 06:27

Part	you	can	read	the	code	in	the	code	base	and	see	what	the	code	is
supposed	to	be	doing,	but	the	more	the	whys.	And	I	think	that	there	are
some	places	in	our	code	where	we	have	Rust	docs	that	sort	of	explain	the
interfaces	that	different	units	are	trying	to	provide,	but	especially	when	we
try	to	tie	this	into	more	advanced	testing	regimes	and	things	like	that.	I
think	that's	something	that	would	be	very	helpful	is	that	if	every	code	unit
in	the	code	base	describes	sort	of	exactly	what	properties	it	was	trying	to
achieve,	what	its	invariance	are	like,	what	it	was	expecting	from	inputs
and	what	its	expected	outputs	are	supposed	to.

Brice	Dobry - 07:12

Be,	I	think	that	could	be.

Aaron	Blankstein - 07:17

Thought	of	as	very	bureaucratic.	But	I	think	that	the	code	base	is	at	this
point	sort	of	mature	enough,	big	enough	and	widely	deployed	enough	that
we	should	be	engaged	in	that.	You're	asking	for	a	numeric	value.	On	how	I
would	rate	the	stacked	blockchain.	I	would	go	with	a	three.	I	would	say
that	we're	halfway	between	a	pure	dumpster	fire	and	a	dumpster	fire
cysteine	chapel	hybrid.

Will	Corcoran - 07:51

Is	that	due	to	bloat	or	is	that	due	to	just	being	opaque?

Aaron	Blankstein - 08:00

I	think	that	there's	like	any	number	of	areas	I	could	point	to.	I	think	that
one	of	the	biggest	things	is	that	the	bulk	of	development	in	the	stacks
blockchain	code	base	was	done	by,	say,	fewer	than	five	people	working,
generally	speaking,	under	time	constraints	with	the	feeling	that	it's	better
to	get	something	that	works	than	nothing	at	all.	And	that's	reflected	sort
of	all	up	and	down	different	points	in	the	stack.

Kenny	Rogers - 08:43

You	could	look	at	just	our	build	system.

Aaron	Blankstein - 08:46

Like	our	cargo	tunnel	layout	is	a	pure	dumpster	fire.	You	could	pick	any
random	Rust	code	base	from	GitHub	and	we	would	probably	be	in	the
bottom	5%	of	Sensical	Cargo	Tommel	files.	And	you	could	do	that	all	over
the	place	in	our	code	base.	The	directory	structure.	Exactly.	The	fact	that
we	have	this	thing	called	the	neon	node	that	is	like	90%	of	functionality	of
the	code	but	has	a	name	that	few,	I	think,	could	explain.

Jesse	Wiley - 09:32

There	we	are.

Will	Corcoran - 09:35

Jacinta,	if	you	have	your	hand	up.

Jacinta	Ferrant - 09:38

Yeah,	this	is	a	bit	of	a	as	an	outsider	looking	in	at	the	code	base,	it's	very
hard	to	decipher	and	just	similar	to	what	Aaron	said	with	the	why.	I'm	sure
anyone	who's	written	it	will	have	the	context	as	to	why	it's	laid	out,	the
way	it's	laid	out,	but	from	not	having	any	of	that	context,	it's	quite
impossible	to	follow.	And	one	of	the	things	I	was	wondering,	I	know	that
this	is	a	tech	debt	thing,	but	something	I	found	incredibly	helpful	in
general,	and	maybe	it's	not	possible	with	the	stacks	blockchain,	but	maybe
for	any	new	additions,	even	just	enabling	Rust,	clippies	auto	deny	anything
that's	public	that	doesn't	have	docs	associated	with	it.	It	just	forces	you
when	you	code	to	ensure	that	it's	documented	within	the	code.	So	if	you
run	rust	docs,	it's	there.	So	things	like	that	are	like	low	hanging	fruit,	but
in	terms	of	fixing	past	code	base,	it's	a	lot	harder.

Jacinta	Ferrant - 10:42

But	just	was	a	comment	I	wanted	to	make	because	that	was	something
that	helped	me	a	lot	at	my	old	work	when	we	had	the	issue	with
documentation.	Is	anything	new	clippy	deny	if	no	documentation	there.
Highly	recommend.	Yeah,	that	was	it.

Jesse	Wiley - 10:57

Great.

Will	Corcoran - 10:59

Martin,	I'd	love	to	hear	your	perspective.	You're	also	coming	anew	with	a
first	set	of	eyes,	working	on	another	code	base,	but	obviously	having	to
interact	a	lot	with	the	blockchain	code	base.

Mårten - 11:15

Yeah,	because	I've	been	contributing	to	the	stacks	node	a	bit	in	relatively
isolated	tasks.	You	can	still	find	your	way	around	it,	but	yeah,	I	give	it	a
2.5	because	it	sounds	like	people	are	self	aware	of	it.	And	I	think	it's	quite
evident	when	you're	working	with	it	that	it	will	sort	of	build	together.
Another	low	hanging	fruit,	for	example,	would	be	just	breaking	it	up,
breaking	up	the	whole	code	base	into	smaller	crates	just	for	compile	times.
You	can	argue	about	the	structure	of	things,	but	yeah,	it's	not	very
idiomatic.	You	often	see	some	over	engineered	pieces,	some	things	that
can	be	very	simplified,	even	very	simple	things	that	like	yeah,	I	mean,
when	I	joined	we	had	a	lot	of	compiler	warning,	so	the	compiler	would	tell
you	can	do	this	is	better	than	that.	And	there's	still	a	lot	of	clippy	errors
where	an	automated	system	can	say	that	this	is	wrong,	this	is	something
we	can	improve.

Mårten - 12:19

And	I	think	I've	noted	a	lot	of	code	quality	improvements,	created	a	lot	of
tickets	from	that.	We've	actually	gotten	some	outside	contributors,	some
that	I	would	love	to	find	time	to	do,	but	we've	also	been	in	this	sort	of
constant	fire	drill	with	Alpha	and	all	the	other	stuff,	so	I	haven't	gone
around	to	do	that.	So	it	would	be	lovely	if	we	spend	some	time	tending	to
the	quality	of	that.	What	do	you	say?	I've	also	been	participating	in	a
crime	of	writing	s*****	code	because	I	think	the	SPDC	Alpha	code	is	like
from	a	pure	rust	perspective,	it's	a	bit	better,	but	I	have	more	respect	for
the	stacks	node	because	the	code	is	still	intentional,	still	a	working	system.
SPDC	Alpha	is	in	a	pretty	bad	state	because	it's	been	this	sort	of	constant,
let's	just	get	it	out,	no	matter	how	s*****	it	is.

Mårten - 13:11

And	we've	been	having	that	sort	of	attitude	for	a	very	long	time	and	the
system	is	much	more	complex	than	it	sort	of	initially	set	out	to	be.	So	that
code	is	also	quite	s*****	also	because	we	didn't	sort	of	plan	properly.	So	I
think	there's	a	lot	of	learnings	we	can	take	from	developing	this	new	repo
and	doing	SPTC	code	and	still	not	producing	it	in	a	decent	fashion.	That's
a	bit	like	top	of	mind	for	me	about	code	quality.	There's	a	lot	we	can	do	to
improve	that.

sayak - 13:47

Yeah.	One	sort	offhand	thought	is	that	I	think	that	in	the	stacks	code	base,
there	is	a	very	poor	separation	of	libraries	and	binaries.	Everything	is	just
sort	of	like	compiling	in	one	big	pile.	In	general,	I	don't	think	that's	a	very
good	way	of	doing	things,	especially	in	terms	of	concurrent	programming
and	parallel	stuff.	You	should	have	library	functions	that	are	not	dealing
with	any	of	the	Async	stuff	and	then	you	have	binaries	that	are	sort	of	like
spinning	up	these	tasks	and	processes	that	are	doing	that.	So	I	think	that's
like	a	low	hanging	fruit.	I	would	like	just	having	libraries	that	we	can	look
at	as	functionality	and	not	having	to	deal	with	all	the	complexity	of
running	the	actual	thing.

Kenny	Rogers - 14:41

Yeah.

Will	Corcoran - 14:44

So	I	want	to	real	quick	ask	a	naive	question.	When	people	say	test
coverage,	are	you.

Will	Corcoran - 14:52

Saying	that	we	have	ten	blocks	of.

Will	Corcoran - 14:57

Code,	like	ten	small	chunks	of	code,	and	we	have	tests	in	between	all	ten
of	those,	so	we	have	100%	test	coverage?	Or	is	it,	hey,	we're	running	this
group	of	tests	on	this	one	chunk	of	code	and	it's	picking	up	ten	out	of	ten
possible	issues.	So	it	has	100%	test	coverage.

Will	Corcoran - 15:23

Sergey.

Will	Corcoran - 15:24

I	see	you	got	your	hand	up.	I'm	confident	you	can	answer	that	question
too.

Brice	Dobry - 15:33

Yeah,	I	will	try.

Sergey	Shandar - 15:34

So	one	of	the	concepts	that	actually	we	tried	in	SBTC,	at	least	for	one	of
the	first	projects,	there	was	a	relay	server	that	I	actually	created	using
complete	I	O	isolation.	There	is	no	I	O	in	a	library	at	all,	but	I	O	it's	only
on	a	top	level.	So	this	actually	helps	significantly	to	test,	and	actually	to
test	coverage	as	well.	So	this	actually	resonates	with	what	is	saying	that
actually	if	you	can	do	more	describe	a	state	instead	of	doing	async
programming	or	multi	threading	everything	else	as	soon	as	you	do	like	a
state	machine	you	could	push	it	on	top	level	like	all	the	Async
programming	and	multi	threading	programming	on	the	top	level	in	the
application.	So	that	actually	can	significantly	help	in	a	quality	of	code	like
don't	program,	for	example,	thread	pool	in	a	library.	That	doesn't	make
any	sense,	for	example.

Sergey	Shandar - 16:45

And	another	thing	about	if	you	compare	like,	SBTC	repository	so	one	of
the	things	that	actually	was	good,	which	actually	I	wish	that	Stacks
blockchain	do	the	same,	we	actually	done	properly	workspaces	in	Rust
because	currently	what	was	the	problem	with	stacks	blockchain	repo?
That	it's	actually	mixing	the	top	level	cargo	to	ML.	It's	actually	mixing
workspaces	and	project	settings,	and	it's	usually	like	an	ID,	for	example.
They	cannot	understand	what's	going	on.	So	it's	actually	kind	of	like,	I
think	we	need	to	fix	it.	It's	not	an	SBTC	repo,	and	I	mean	in	stock	text
blockchain,	but	in	SBTC	repo,	we	actually	done	it	properly	and	it	actually
works	very	well.

Brice	Dobry - 17:48

That's	my	two	cent.

Jesse	Wiley - 17:52

That's	it.	Thanks,	Sergio.

Will	Corcoran - 17:55

Martin,	I	see	you	got	your	hand	up.

Mårten - 17:58

Yeah,	I	just	wanted	to	build	on	what	Sergey	says	about	like	I	mean,	one
reoccurring	theme	to	many	of	these	discussions	has	been	sort	of
separating	I	O	from	libraries.	You	have	cycles.	I	mentioned	that	here.	And
we're	also	talking	about	test	coverage.	And	I	think	to	me,	the	important
property	is	testability,	right?	If	you	write	your	code	in	a	way	that	it's	easy
to	test	the	code,	then	you	will	also	get	operatability,	which	is	very
important	because	now	when	we've	been	working	with	Stacks	Alpha,	it's
been	really	painful	to	operate	the	stacks	node.	And	that's	something	we've
been	sort	of	seeing	throughout	here,	making	stuff	easier,	more	isolated
and	testable.	And	to	me,	I'm	going	to	be	a	bit	controversial.	I'm	going	to
say	I	don't	care	about	100%	test	coverage.	If	something	is	testable,
depending	on	how	you're	going	to	release	it	and	what	it	is,	you	don't
always	have	to	test	it	as	long	as	you	write	it	in	a	testable	way,	because
that's	going	to	make	things	so	much	easier	to	maintain	and	debug.

Mårten - 19:00

And	you	can	write	tests,	you	can	steal	the	test	driven	development.	I'm	not
opposed	to	that.	But	testability	is	the	holograph.	That's	like	the	word	I
want	to	nag	about	like	testable	code,	testable	code.	So	I	just	want	to	nag	a
bit	about	that.

Jesse	Wiley - 19:14

Thank	you	for	listening.	Thank	you.

Jose - 19:19

I	want	to	add	something	like	a	refresher.	The	weakest	measure	of
coverage	is	the	function	coverage	percentage.	Then	were	doing	in	clarity,
were	doing	a	line	coverage,	but	because	when	you	cover	the	function,
maybe	you	are	missing	some	lines,	but	if	you're	covering	the	lines,	maybe
you	are	missing	some	branches.	That	like	logical	decisions	inside	the
function.	So	now	we	added	the	branch	coverage.	So	that's	the	strongest
way	of	covering	measuring	the	coverage	is	the	combination	of	line
percentage	coverage	and	branch	percentage	coverage.

Jesse	Wiley - 20:06

Thank	you.

Will	Corcoran - 20:14

This	is	not	meant	to	beat	up	on	the	blockchain	code	base	at	all.	A	lot	of
these	questions	came	from	blockchain	contributors	and	one	of	them	I.

Will	Corcoran - 20:26

Think	would	be	worth	diving	into	a.

Will	Corcoran - 20:29

Bit	more	is	just	very	simply	like	what	is	the	most	frustrating	aspect	of.

Will	Corcoran - 20:34

Interacting	with	the	blockchain	at	this	point	in	time?

Jesse	Wiley - 20:42

Jacinta.

Jacinta	Ferrant - 20:45

I	don't	know	if	this	is	the	absolute	most	frustrating	thing.	I've	had	very
limited	experience	getting	the	node	up	and	running.	I	actually	found	it
difficult	to	do.	But	the	thing	that	has	been	a	bigger	pain	point	is	for
example,	the	next	branch	I	had	to	interact	with	and	were	trying	to	debug
an	issue	and	that	branch	is	so	bloated	that	I	couldn't	isolate	changes	to	try
and	find	the	bug.	So	what	I	ended	up	doing	was	I	went	back	and	I
manually	pulled	out	and	rebased	all	of	the	SPTC	changes	and	created	a
new	branch.	And	this	was	a	nightmare	that	took	me	about	two	days	to	do.
But	if	we	just	made	it	so	that	we	never	merged	basically,	and	we	only	ever
did	rebases,	that	sort	of	approach	would	have	been	easy.	Like	I	could	have
easily	just	pulled	out	the	changes	I	wanted	and	then	iterated	through	and
the	history	would	have	made	sense.

Jacinta	Ferrant - 21:44

And	just	having	better	PR	brand	chain	practices	in	GitHub	would	make
debugging	the	stacks	node	for	me	so	much	easier.	And	that's	the	only	time
I've	ever	had	to	really	interact	with	it	is	when	I'm	trying	to	debug
something	that's	already	exit	like	already	in	there.	So	from	my
perspective,	which	has	been	pretty	limited,	improving	that	would	be	like
huge.	Yeah,	that's	it	for	me.

Mårten - 22:10

Well,	can	I	add	to	that?	That's	an	extremely	good	point.	When	I	first
encountered	the	stacks	node	code,	I	do	a	lot	of	git	blame.	I	go	down	in
version	history,	I	check	out	old	versions	of	the	code,	I	look	at	diffs,	I	see
how	it's	been	developing	and	I'm	going	to	run	to	bit	here.	Like	the
branching	strategy	in	the	stacks	blockchain.	Again,	extreme	respect	for
the	actual	product	and	the	system,	but	that	almost	horrible.	It	was	very
hard	to	make	sense	of	any	changes.	A	lot	of	changes,	small	changes	were
barely	explained	or	linked	to	any	issues	or	any	discussions	or	context.	So
it's	very	hard	to	understand	why	things	were	the	way	they	were.	And	a	lot
of	the	time	you	would	just	hit	a	big	merge	commit	between	next	and
develop	and	master	one	way	or	back.	And	the	merge	commits,	they	are
just	so	hard	to	read	like	a	linear	history.

Mårten - 23:04

The	gold	standard	is	a	linear	history	where	every	change	links	to	appear
and	hopefully	an	issue	with	some	sort	of	explanation	of	things.	So	yeah,
team	rebase	100%.	This	is	just	ranting	because	I	don't	know	if	there's	a
good	way	to	fix	it.	We	could	change	the	branching	structure.

Will	Corcoran - 23:26

Sergio.

Sergey	Shandar - 23:29

I	would	like	to	comment	on	rebase.	Honestly,	my	personal	opinion,	I	hate
rebase,	but	in	the	same	time	I	completely	agree	with	linear	history	and
what	we	do	in	SBTC	stacks,	SBTC	repo,	we	do	allow	only	squash	merge,
pull	request.	So	before	you	actually	merge	in,	you	could	do	whatever	you
like.	I	actually	keep	usually	a	very	complicated	history,	but	as	soon	as	you
merge	the	final	history	in	main	branch,	it's	always	like	kind	of	like	a	pull
request	only.	So	that's	actually	like	I	don't	know	what	team	is	thinking.	Is
it	actually	helpful	for	this	strategy?	Because	I	don't	want	to	rebase.

Jesse	Wiley - 24:19

When.

Sergey	Shandar - 24:20

I	develop	because	I	still	would	like	to	keep	history.	Maybe	I	can	have
several	branches,	but	as	soon	as	I	actually	merge	and	make	a	pull	request,
then	we	do	only	and	we	allow	only	score	merges,	we	don't	allow	anything
else.	And	another	thing	is	actually	we're	working	in	Main	Branch.	So	the
idea	is	like	there's	a	two	strategies	usually	and	this	actually	is	the
difference	between	currently	stacks	BTC	and	stacks	blockchain	that
actually	in	stacks	BTC.	We	do.	Work	in	main	branch	and	we	only	can	like
if	we	need	to	release,	we	can	tug	or	make	a	separate	branch	for	specific
version	if	we	need	to	like	an	old	version.	But	the	main	development,	it's	in
main	branch	and	this	is	actually	like	in	my	opinion,	this	is	what	currently
open	source	community	tends	to	work	on.	So	if	you	just	go	there	into	the
repo,	open	it	and	it's	actually	the	main	branch,	the	main	page	will	be	the
latest	code.

Sergey	Shandar - 25:26

So	I	don't	need	to	switch	to	development	branch	or	to	next	branch	or	to
something	else.	That's	one	point.

Mårten - 25:36

Can	I	add	something	to	the	branching	strategy?	Yeah,	I	agree.	And	I	feel
like	when	you	have	a	repo	and	you're	working	on	a	single	branch,	if	you
can	do	that's	the	best	thing	because	it	makes	things	simpler.	On	PRS,	you
can	do	merge	commits	and	still	you	can	squash	everything	together.	It's
easy	to	inform	enforce	a	linear	history.	Previously,	in	one	of	my	jobs,	I
worked	in	a	more	complex	project	with	a	lot	of	teams,	working	in	a	huge
code	with	like	2	million	lines	of	codes.	Quite	a	messy	project,	but	they	still
maintained	a	very	good	version	history.	And	this	was	also	like	one	of	the
setups	where	we	had	more	needs	than	we	could	cover	with	a	single
branch.	So	we	had	the	multi	branch	strategy,	but	everything	still	boiled
down	into	a	linear	history	on	every	branch.	We	never	merged	between	big
branches.

Mårten - 26:29

They	were	still	based	on	each	other.	So	you	had	like	an	integration	branch
where	people	work	together	and	things	were	scorched	together	into
releases	and	they	were	ultimately	making	the	way	to	the	main	branch.	And
every	now	and	then	you	would	have	to	make	an	emergency	release	and
roll	it	back.	But	it	still	made	a	lot	of	effort	in	maintaining	this	linear
relationship	between	the	branches	so	that	you	don't	have	these	separate
heads	of	these	mythological	beasts	which	are	biting	each	other	back	and
forth.	And	it's	extremely	hard	to	understand	it.	And	I	think	that's
sometimes	you	need	a	more	complex	branching	strategy.	But	being	able	to
maintain	a	linear	history	is	giving	a	lot,	especially	to	new	developers,	but
also	when	you	need	to	debug	or	when	you	need	to	roll	back.	And	that's	a
value	that	you're	getting	as	the	system	grows	over	time.

Mårten - 27:15

So	I	just	want	to	advocate	for	that.

Will	Corcoran - 27:20

So	as	we're	sergio,	I'll	come	to	you	in	a	second,	but	maybe	people	could
think	about	this.	So	as	we're	ramping	up	in	the	size	of	the	team	and	the
complexity	of	the	projects	and	what	we	intend.

Will	Corcoran - 27:40

To	ship,	suppose	that	complexity	needs	to.

Will	Corcoran - 27:51

I	guess	what	I'm	trying	to	ask.

Will	Corcoran - 27:52

Is	how	do	you	ideally	balance	new	feature	time?

Will	Corcoran - 28:03

Like	time	spent	working	on	new	features,	time	spent	working	on
enhancement	to	existing	features	and	just	refactoring	and	kind	of	code
health,	just	trying	to	improve	upon	what's	already	there	or	simplify	it	even
more.	If	you're	trying	to	think	about	like	percentages	of	time,	what	do	you
suppose	that	you	allocate	now	versus	what	in	an	idealized	situation,	you
would	allocate.

Will	Corcoran - 28:37

Sergio,	you	want	to	jump	in?

Sergey	Shandar - 28:42

I	just	like	to	add	to	the	last	comment	what	is	Parting	said?	Sorry,	that	a
little	bit	like	kind	off	topic.	I	will	try	to	finish	this.	So	the	thing	is	actually
to	work	everything,	like	work	in	a	one	branch	and	just	do	like	a	features	in
separate	branch	and	then	merge	them	always	into	main	branch.	I	see	like,
huge	companies	and	huge	teams	like	Facebook,	Google	and	Microsoft
sometimes	for	some	projects	they	use	monoreapo	with	one	branch,	like
with	main,	and	it's	actually	successful.	So	it's	not	like	only	like	that.

Mårten - 29:24

Depends	on	a	bit	on	deployment	and	what	the	product	is.	And	I	agree,	if
you	can	do	that's	the	best.

Sergey	Shandar - 29:30

I	think	it's	always	possible,	in	my	opinion.	I've	seen	different	projects.	It's
always	possible,	but	you	need	to	organize	it	properly.

Mårten - 29:36

But	if	we	take,	for	example,	I'm	not	sure,	it	depends	on	the	code
organization.	If	you	have	higher	quality	code,	then	it's	probably	more
possible,	especially	if	you're	developing	things	as	libraries.	I	think
everything	you're	suggesting	sort	of	makes	sense.	But	if	we	take	the
current	hardball,	which	is	the	stacks	code,	and	we're	taking	the	work,
which	is	happening	on	SPTC,	which	is	a	hard	fork,	you	cannot	merge	like
a	wire	format	update	in	the	stacks	node,	push	it	on	Master	and	then
release	it	because	then	you're	causing	a	hard	fork	on	the	chain.	Right.	So
you	still	have	to	control	that.	So	that	would	be,	unfortunately,	a	long	lived
branch.	But	you	would	ideally,	when	you	release	it,	not	have	a	merge
commit	that	just	bashes	these	things	together,	but	actually	maintaining
this	branch	as	recently	as	possible	and	actually	rebasing	it.	But	again,	I
see	that	my	example	is	also	based	on	a	system	which	doesn't	have	ideal
code	quality.

Mårten - 30:34

And	I	see	how	you	can	ideally,	I	agree	that	you	should	adjust	the	code	base
so	that	it's	possible	to	work	in	that	way.	And	that	has	high	requirements	on
the	actual	code.

Sergey	Shandar - 30:45

We	could	actually	discuss	it	on	separate	meeting.	I	think	it's	actually	like	a
big	and	we	could	discuss	it,	like	the	strategy,	how	we	could	actually
improve	this.	Okay.

Aaron	Blankstein - 30:54

Yeah.

Will	Corcoran - 30:56

So	in	terms	of	trying	to	improve	the	situation,	suppose	that	one
methodology	was	documentation.

Will	Corcoran - 31:08

So	let's	talk	about	that	real	quick.

Will	Corcoran - 31:12

I	got	a	couple	of	questions	regarding	documentation.

Will	Corcoran - 31:16

If	anyone	wants	to	take	on	any.

Will	Corcoran - 31:18

Of	these,	like	from	a	high	level.

Will	Corcoran - 31:20

Perspective,	what	do	we	feel	the	current.

Will	Corcoran - 31:23

State	of	documentation	is?	What	parts	of	the	code	are	well	documented
versus	poorly	documented?	And	who	realistically	can	take	on	more
documentation?

Mårten - 31:35

So	can	I	just	answer,	because	you	had	a	previous	question	about	how
much	time	we	allocated	working	on	code	because	we're	not	in	sync	in
questions	and	discussions.	Just	to	comment	on	that	one,	I	want	to
advocate	for	the	Scout	Rule,	where	you're	always	leaving	code	that	you're
touching	in	a	better	place	than	it	was	when	you	found	it.	But	also,	the	way
I	see	it	is	like	personally	right	now,	I	think	we	especially	the	work	I've	been
doing,	I've	been	focusing	much	more	on	features	and	pushing	things	out,
especially	SPTC	Alpha.	It's	not	in	a	good	state	and	we	don't	dedicate	time
to	code	enhancements.	And	if	we	even	formulate	the	ticket	for	a	code
quality	improvement,	it's	low	prior,	which	is	really	bad.	Ideally,	you	should
spend	at	least	like	20%	of	a	sprint	on	pure	quality	enhancements,	in	my
opinion.	But	on	the	other	side	is	that	when	you're	actually	implementing	a
feature,	if	I'm	having	a	feature,	because	the	way	you're	implementing	it,
typically,	or	at	least	my	opinion,	the	best	way	to	do	it	is	go	through	the
code.

Mårten - 32:37

And	most	of	the	work	is	like,	tweaking	the	code	so	that	it's	prepared	for
the	change	and	then	the	actual	change	that	you're	implementing	is	trivial.
So	in	one	sense,	actually	improving	implementing	features	can	always
improve	code	quality.	And	you	should	always	like	that's.	Again.	The	scout
rule.	Like,	you	should	always	think	about	code	quality	in	every	feature
that	you're	working.	But	yeah,	that's	sort	of	self	evident.	So	let's	get	back
to	documentation,	unless	anyone	else	has	any	comments	on	the	code
quality	timeline	question.

Will	Corcoran - 33:07

Yeah,	you'll	probably	hear	me	say	this	a	million	times	in	the	future,	but	I
was	an	architect	for	15	years	until	just	two	years	ago.	And	a	saying	from
the	construction	industry	is	measured	twice,	cut	once.	Which	is	really
make	sure	that	before	you	take	action,	you	are	very	confident	of	what	it	is
that	you're	going	to	do	and	then	spend	a	minimal	amount	of	time	taking
action.	Another	way	that	it's	been	said	is	I	think	there's	an	Abraham
Lincoln	quote,	if	you	gave	me	6	hours	to	cut	down	a	tree,	I'd	spend	the.

Will	Corcoran - 33:47

First	5	hours	sharpening	my	axe.

Mårten - 33:51

What	did	you	say?	Something	twice,	measure	twice,	cut	once.

Kenny	Rogers - 33:56

Like	you	can't	cut	a	piece	of.

Will	Corcoran - 33:57

Wood	twice,	so	you	got	to	measure	it	twice.

Mårten - 34:01

I've	heard	the	Think	Twice	code	once.

Will	Corcoran - 34:09

Kenny,	I	know	that	you're	specifically	interested	in	documentation.
Anything	beyond	what's	on	the	screen	here	that	you're	dying	to	know	or
any	words	of	wisdom	that	you	would	want	to	share?

Kenny	Rogers - 34:27

No,	I	think	these	are	the	important	questions,	just	for	my	part.	From	what
I'm	able	to	work	on,	I'm	very	much	like	sort	of	a	higher	level	developer
documentation	person.	So	I'm	able	to	write	documentation	on	how	to
build	a	front	end	for	clarity	contracts,	how	to	write	clarity	smart
contracts.	But	my	expertise	is	definitely	not	at	the	protocol	level.	And	so
I'm	happy	to	help	write	documentation,	but	I	will	definitely	if	I	do	that,	I'll
definitely	need	some	help	with	understanding	the	code	base	and	stuff	like
that.

Jesse	Wiley - 35:04

Sure.	Yeah.

Aaron	Blankstein - 35:11

So	I	just	wanted	to	chime	in	on	documentation	because	I	think	based	on
Kenny's	answer	there,	I	think	that	really	there's	at	least	sort	of	two	broad
categories	of	documentation.	I	mean,	there's	like	documentation	that	is
supposed	to	be	end	user	oriented	or	like	developer	user	oriented.	And	that
is	great	for	people	to	help	the	blockchain	contributors	with	people	who
are	contributing	to	the	blockchain,	it's	great	for	them	to	help	there.	The
other	category	of	documentation	is	like	the	documentation	of	the	code
base	itself	that	we	talked	about	a	little	bit	earlier	in	this	call.

Brice	Dobry - 35:59

And	that	I	think	needs	to	be.

Aaron	Blankstein - 36:02

100%	of	the	responsibility	of	the	people	contributing.

Kenny	Rogers - 36:07

Like,	if	you	are	writing	code,	you.

Aaron	Blankstein - 36:10

Are	responsible	for	the	documentation	of	that	code.	I	think	this	is
something	that	has	had	broad	agreement	amongst	blockchain
contributors	since	time	immemorial.	But	just	because	we	have	agreement
on	that	fact	doesn't	mean	that	the	code	base	has	documentation	because
otherwise	we	would	already	be	there.	And	so	I	just	want	to	plus	one
jacinta's	earlier	point	that	automated	tools	are	probably	the	only	way.	Out
of	this,	where	PRS	just	have	a	giant	red	X	next	to	them	if	they	do	not	come
with	some	amount	of	documentation.	And	it's	true	that	you	can	defeat	that
giant	red	X	by	just	writing	bad	documentation,	but	I	think	that	we	have	to
have	some	level	of	trust	that	people	won't	just	do	that.

Will	Corcoran - 37:14

I	see	you	have	your	hand	up.

Brice	Dobry - 37:16

Yeah.

Jacinta	Ferrant - 37:16

So	this	is	kind	of	related	to	the	earlier	comments	of	if	the	code	was	broken
into	clearly	segregated	libraries,	a	lot	of	the	documentation	would	come
easier	because	you're	going	to	end	up	with	a	public	API	from	your	library.
And	if	you	had,	for	example,	you're	probably	only	exposing	a	certain
amount	of	functions,	and	those	are	the	ones	that	need	the	bare	minimum
documentation	from	the	user's	perspective.	And	then	that	just	like	if	you're
using	Rust	properly,	your	user	documentation	comes	naturally	from	the
code.	But	then,	as	Aaron	said,	if	you're	the	one	writing	the	code,	you
should	be	documenting	it	as	well.	So	I'm	very	much	for	a	component	of
the	function	should	be	named.	I	think	a	lot	of	people	think	they	don't	need
documentation	because,	well,	if	it's	a	well	defined	named	function,	you
don't	need	the	documentation.	And	that's	partly	true,	but	even	with	private
functions,	I'd	say	that	isn't	the	case.

Jacinta	Ferrant - 38:16

Even	just	a	one	liner	is	all	you	need.	But	I	really	think	pushing	for	libraries
would	help	with	getting	that	minimum	required	documentation	that	would
seem	more	digestible.	Because	right	now,	if	you	look	at	the	stacks
blockchain	code,	it's	so	big	and	the	files	are	so	massive	that	it's	hard	to
know.	What	would	you	even	define	as	the	bare	minimum	documentation	to
be	considered	acceptable?	I	think,	yeah,	they	kind	of	go	hand	in	hand
separating	into	a	library,	but	that's	just	me.	Anyway,	that's	it.

Will	Corcoran - 38:49

Go	ahead,	Martin.

Mårten - 38:50

Yeah,	because	this	discussion	often	boils	down	to	something	about	self
documented	code	versus	writing	comments,	which	is	like	I	tend	to	be	on
the	team	of	being	sparse	with	comments	and	being	very	intentional	about
naming,	but	of	course	depends	on	how	you	use	it.	If	you	have	really	good
code,	this	is	about	a	developer	reading	code	and	understanding	what	the
code	does.	And	if	the	code	is	essentially	has	integrity,	it's	sort	of	aligned
with	the	intention	of	the	code	and	what	it	does	in	modules.	And	like	you
simply	says,	if	we	have	better	structures,	less	things	needs	to	be	explained.
There's	always	going	to	be	this	sort	of	room	in	between.	Things	are	not
going	to	be	perfect.	The	worst	part	is	code	that	people	think	is	self
documenting	that	isn't.	So	you	always	have	to	compensate	for	that	gap
with	comments	or	things	like	that.

Mårten - 39:43

But	if	we	zoom	out	a	bit,	I	think	now	we're	talking	about	code	and
developer	documentation	more	intended	for	ourselves,	the	developers.	We
do	have	external	documentation.	I	think	that	one	is	pretty	decent.	I'm	not
the	best	person	to	judge	that	one.	But	there's	another	side	of	the
documentation	as	well,	which	I	think	the	code	documentation	is	super
great	if	we	compare	to	how	bad	we	are	at	documenting	design	decisions
and	efforts	and	issues	and	what	we're	about	to	do	whenever	we're	going
to	work	and	plan	and	do	design.	Historically,	we	haven't	been	very	good	at
doing	that.	It's	very	hard,	at	least	for	me,	to	understand	the	SPTC	design.
The	exception	to	this	is	actually	the	Sips,	because	I	feel	like	whenever	I
read	Sips,	I	can	actually	understand	things	about	the	stacks	blockchain
and	things	like	that.	So	they	are	very	well	curated.

Mårten - 40:40

That's	a	slow	process,	but	I	think	there's	a	lot	of	room	for	us	to	improve	in
terms	of	planning,	coordinating	and	thinking	about	what	we're	going	to
do.	Again,	think	twice,	code	once.	Like,	what	are	the	things	we	need	to	do,
what	are	the	next	steps?	Coordinate,	implement	those	things	and	having
that	sort	of	intention	instead	of	just	coding	things	together	and	seeing
what	happens,	actually	having	a	plan,	following	that	plan,	iterating	on
that	plan	because	we're	never	going	to	plan	correctly	first.	That's	going	to
make	it	so	much	easier	for	us	as	developers	to	also	write	clean	code	so	this
all	ties	together,	right?	Because	if	I	know	what	feature	I'm	doing,	the
purpose	of	that	feature	is	going	to	be	easier	for	me	to	structure	that	code.
It's	going	to	be	easier	to	document	that	code,	and	then	the	developer
documentation	is	going	to	be	easier.

Mårten - 41:26

But	it's	also	going	to	be	easier	to	trace	back	context	about	that	code	again
in	the	Git	history.	Seeing	why	this	code	is	there,	how	that	relates	to	the
plan	and	how	that	small	piece	of	code	fits	into	the	big	picture	of	what	we
want	to	achieve	and	our	long	term	goals.	And	I	think	that	set	of	things	is
very	fundamental	to	make	it	easier	on	the	other	things.	I	think	we	have	a
long	way	to	go	in	terms	of	design	and	planning	and	translating	that	into
smaller	issues	and	doing	that.

Will	Corcoran - 41:57

Bryce,	before	I	throw	it	to	you,	maybe	think	about	this	also,	but	when	we
have	these	tasks	in	front	of.

Will	Corcoran - 42:06

Us,	like,	hey,	we	could	all	help.

Will	Corcoran - 42:10

Save	ourselves	a	lot	of	time	and	effort	and	grief	and	make	this	project
easier	to	build	upon	in	the	future,	faster	development.	If	we	had	a	cleanup
crew	coming	up	behind	us.	And	basically	what	I'm	trying	to	ask	the
documentation	and	some	of	the	refactoring	are	these	things	that	you	could
delegate	to	someone.	Like	if	were	to	support	people	with	critical	Bounties
and	say	for	a	period	of	time,	we	know	that	the	investment	is	going	to	be
worth	it.	And	so	we	just	need	to	identify	a	couple	of	people	and	we	can
support	them.	Is	that	something	that	can	be	delegated	or	not?

Sarala	B - 42:58

Was	that	directed	at	you?	Go	ahead.

Brice	Dobry - 43:01

No,	go	ahead.

Sarala	B - 43:02

Yeah,	I	would	separate	the	refactoring	of	the	code	from	the
documentation	because	delegating	and	off	outsourcing	refactoring	of	code
to	an	external	team	is	just	asking	for	us	all	to	fail	collectively	very
aggressively.	And	again,	documentation.	Also,	like	I	said	earlier,	we	need
to	split	that	into	two	categories.	Everything	that	has	been	talked	about
right	now,	the	documentation	that's	related	to	code,	self	documentation
versus	comments,	the	quality	of	code	readability,	et	cetera.	That	needs	to
be	a	culture	and	that	needs	to	be	kind	of	embedded	in	everything	that	we
do	versus	outsourcing	it.	The	part	that	I	see	that	can	be	delegated
outsourced	is	the	external	add	on	documentation	that	comes	as	an	aid	in
addition	to	the	code,	right.	Documentation	of	how	to	use	the	system	that's
more	outside	looking	in.	So	I'll	be	very	careful	kind	of	bringing	in	cleaning
crews	or	refactoring	or	delegating	the	responsibility.

Sarala	B - 44:10

It	needs	to	be	just	everyone	taking	ownership	of	that.	Easier	said	than
done.	But	we	need	guardrails,	like	we've	talked	at	length	about	what
needs	to	be	done,	what	are	the	best	practices.	There	are	more	points	that
we're	all	aligned	on.	I	think	it's	a	matter	of	how	do	we	get	there	in	terms
of,	okay,	how	do	we	tweak	our	PRocess	so	that	it's	kind	of	embedded
within	that.	How	do	we	change,	how	do	we	change	how	we	commit	code,
how	do	we	merge	code?	Just	having	guardrails	around	that	is	the	next
step.	I	think	just	collating	all	our	common	pieces	right	now	and	taking
those	action	steps	is	probably	worth	it	for	the	next	sprint,	for	the	sprint
that	we're	talking	about.	And	then	I	would	also	include	for	any	PR	that
goes	in	checklist	of	those	items	and	guardrails	around	that.	Does	that
make	sense?

Jesse	Wiley - 45:06

Yeah.	Bryce	yeah.

Brice	Dobry - 45:09

So	I	just	wanted	to	add	one	other	kind	of	piece	of	documentation	that
maybe	isn't	covered	by	what	we've	talked	about	with	PRS	and	making
sure	everything	new	is	documented.	I	think	there's	also	the	architecture
and	design	documents	that	are	pretty	lacking	right	now	that	I	imagine
that	living	in	a	wiki	in	the	GitHub	repo	that	can	be	editable	by	everybody.
And	this	will	be	like	the	place	you	go	when	you're	jumping	into	a	new
section.	I	can	go	and	see	these	threads	are	running	and	this	is	how	they're
communicating.	Kind	of	the	higher	level	stuff	that	is	probably	in	the
comments	and	in	the	code.	But	it's	hard	to	know	where	to	look	for	it	if	you
don't	know	where	to	go.	So	I	think	that's	a	really	important	piece,
especially	for	getting	new	programmers	in	there.

Jesse	Wiley - 46:00

Sign	up.	Yeah.

sayak - 46:04

Just	to	take	back	what	Martin	was	talking	about.	So	basically,	the
conversation	about	self	documenting	code	and	writing	documentation,	I
feel	a	little	misguided	because	when	we're	talking	about	self	documenting
code,	we're	talking	about	individual	functions.	And	I	think	that	if	you	write
good	code,	that's	fine.	However,	we're	just	working	with	tons	and	tons	of
files,	right?	So	it's	like	figuring	out	how	the	data	is	flowing	is	the	biggest
challenge.	So	I	think	that,	for	instance,	when	we	talk	about	splitting	code
up	into	separate	crates,	separate	modules,	it's	sort	of	like	limiting	the
scope	of	things	that	could	be	interconnected	to	each	other.	Also	like	the
libraries	versus	binaries	thing,	it's	sort	of	like	reducing	the	complexity	of
things	that	you	need	to	navigate	to	understand	one	piece	of	code.	So	to
me,	documentation	isn't	necessarily	explaining	what	the	function	is	doing,
because	you	should	know	that	from	reading	the	code,	but	it's	more	like
how	different	pieces	are	sort	of	fitting	together	into	the	bigger	puzzle.

sayak - 47:15

And	the	bigger	puzzle	cannot	be	the	whole	code	base.	The	bigger	puzzle
has	to	be	like	smaller	units.	And	then	once	you	ungraph	the	scope	of	one
smaller	unit,	you	move	up	like	one	layer	and	it	should	be	pretty	layered.

Jesse	Wiley - 47:33

Excellent.

Jacinta	Ferrant - 47:36

I	was	just	going	to	partly	echo	what	Soralis	said,	but	in	terms	of	how	I
would	kind	of	approach	this	if	people	are	willing	to	dedicate	a	sprint	to
tech	debt	before	even	doing.	Maybe	this	is	wrong,	but	before	even	doing
documentation,	let's	say,	like	I	use	the	example	of,	let's	say,	use	clippy.	You
can	just	apply	it	to	a	single	file,	and	then	you	tackle	that	file	for	a
documentation	as	an	example.	I	would	probably	not	even	bother	doing
that	until	the	architecture	design	of	how	it	should	be	refactored.	Like,
okay,	let's	use	an	example	of	all	the	Http	code	being	pulled	out	into	a
proper	library	on	the	side,	for	example,	all	of	the	I	can't	remember	exactly,
I	was	done	with	the	peer	to	peer	network	that's	set	up	in	the	stack.	So	if
that	was	pulled	out,	it	would	be	a	lot	easier	after	that	to	then	say
document.

Jacinta	Ferrant - 48:36

There	could	be	an	overarching	story	ticket	that's	document	the	Http	code.
But	when	it's	built	in	the	way	it	is	now,	I	think	there's	a	lot	of	functions
combined	together	that	it'd	be	very	hard	as	someone	coming	in	who	isn't
the	one	who	first	wrote	it,	to	document	and	to	follow	the	flow.	So	I	would
not	even	bother	with	the	documentation	until	the	refactor	of	the	code
layout	is	decided.	Then	it's	a	lot	easier	to	break	it	down	and	probably
someone	who	because	at	this	point,	it'd	be	very	hard	to	say.	I	mean,	I	think
Aaron	wrote	I	don't	know	how	many	lines	of	code	he	wrote,	but	will	he
have	the	time	to	document	it	all?	I	highly	doubt	that.	So	I	would	definitely
make	sure	that	people	aren't	diving	headfirst	into	documentation	before
things	like	the	library	is	being	pulled	out	is	done.

Jacinta	Ferrant - 49:25

That's	just	my	viewpoint.

Jesse	Wiley - 49:26

Yeah,	that's	it.

Will	Corcoran - 49:28

Yeah.	No,	that's	really	wise	in	terms	of.

Will	Corcoran - 49:31

Not	wanting	to	just	reinforce	a	bad.

Will	Corcoran - 49:35

Pattern	or	allocate	time	towards	documentation	until	that	first	level	of
really	simplification	can	be	done.

Will	Corcoran - 49:49

So	in	terms	of	sorella,	I'd	love.

Will	Corcoran - 49:52

To	hear	your	opinion	on	this	in.

Will	Corcoran - 49:54

Terms	of,	like,	staffing,	something	like	that.

Will	Corcoran - 49:58

Or	considering	the	time	that	would	go	into	something	like	that.

Jesse	Wiley - 50:05

How	do	you.

Will	Corcoran - 50:06

Consider	those	decisions	and	prioritizing	that?	At	what	point	would	that
make	sense?

Sarala	B - 50:15

It's	a	question	around	taking	time	out	specifically	for	documentation	and
refactoring.

Will	Corcoran - 50:22

I	think	prior	to	that,	since	I	mentioned,	like,	hey,	what	if	there	was	a	sprint
that	was	just	focused	on	alleviating	tech	debt	before	trying	to	get	into
documentation	and	building	upon	that,	really	just	make	sure	that	we	have
clarity	and	clean	delineations.

Sarala	B - 50:45

I	would	even	probably	step	back	a	little	more.	I've	had	my	fair	share	of
refactoring	throughout	my	life.	For	any	refactoring	to	be	successful,	you
need	good	testing	strategy	first.	Otherwise,	how	else	would	you	know	that
your	refactored	code	is	actually	functioning,	working	well?	That's	step
zero.	So	for	sprint	Zero,	as	we	collating,	what	needs	to	be	refactored,
what	needs	to	be	modularized,	what	needs	to	be	documented,	let's	work
on	the	guardrails	around	how	do	we	determine	all	of	this	is	successful?	So
starting	with	how	do	we	improve	our	testing,	then	comes	refactoring	that
would	be	around	cleaning	up	code.	Marie	condoing	it	a	term	that	I	use
internally	at	Hero	quite	a	bit	and	also	modularizing.	Then	use	that	for	the
next	sprint.	And	then	as	part	of	as	you're	doing	both	of	these,	I	think
documentation	needs	to	go	in	tandem	with	that.

Sarala	B - 51:44

It's	not	one	after	the	other	or	one	is	better	than	the	other.	It	needs	to	go	in
tandem,	parallel.	We	can	look	at	the	documentation	that	Bryce	and	others
have	highlighted	around	architecture,	design,	documentation,	external,
outside	looking	in	documentation	that	doesn't	have	to	wait	for	the
refactoring	that	can	continue	to	happen.	That's	how	I	would	start.

Will	Corcoran - 52:10

And	then,	Aaron,	I	want	to	come.

Will	Corcoran - 52:12

To	you	last	when	you're	confronting,	hey.

Will	Corcoran - 52:16

We'Ve	got	this	big	initiative	in	front	of	us	with	federal	blocks	that	needs	to
move	forward.	How	do	you	consider	weaving	in	some	of	the	things	that
Saral	was	just	mentioning,	like	this	theoretical	sprint	zero,	sprint	one,
sprint	two	of	testing	an	architecture	and	then	refactoring	and
documentation.

Brice	Dobry - 52:43

Yeah.

Aaron	Blankstein - 52:44

So	I	guess	to	answer	the	question	about	how	I	think	about	weaving	it.

Kenny	Rogers - 52:49

In	for	a	work	stream	like	the.

Aaron	Blankstein - 52:55

Testing	workstream,	there	are	sometimes	actual	requirements	from	the
testing	work	stream	that	things	become	more	modular	in	the	code	base.	In
order	to	be	able	to	write	model	tests	or	property	tests,	you	have	a
requirement	from	the	code	base	itself	in	order	to	run	the	tests.	And	so	you
need	to	do	some	of	that	refactoring	or	some	of	that	documentation	as	part
of	that	work	stream	in	the	first	place.	And	I	kind	of	think	that	better
blocks	will	have	some	similar	shapes.	Like,	if	you	think	about	all	the
proposed	changes	to	the	protocol,	the	prose	changes	to	the	consensus
algorithm,	that	work	is	going	to	end	up	needing	to	either	replace	or
modify	large	portions	of	the	code	base	and	that's	a	good	time	to	think
about	abstractions.	So	that's	how	I	would	think	about	weaving	it	in.	But
there's	also	plenty	of	work	that's	kind	of	unrelated	to	that,	but	that	would
also	be	super	beneficial	refactoring	work.

Aaron	Blankstein - 54:13

And	when	I	think	about	refactoring	sprints	or	something	like	that	and	just
in	general	complaints	about	code	quality,	the	way	that	you	move	from	just
like	a	general	erring	of	grievances	to	actual	work	completed	is	like	you
have	to	generate	really	specific	tasks.	So,	like,	an	example	that	comes	to
mind	immediately	right	now	is,	like,	modularizing.	The	clarity	code	base
sufficiently	that	the	WASM	compatible	clarity	library	that	gets	published
on	the	cargo	repositories	can	actually	be	built	from	the	main	line	of	the
stacks	blockchain.	Because	that	seems	really	annoying,	both	for	clarinet,
but	also	if	we	wanted	to	integrate	any	testing	into	CI,	that's	impossible	to
do.	So	that's	like	a	specific	task	with	basically	a	success	metric.	And	so	I
think	actually	breaking	into	things	like	that	would	be	the	idea.

Muneeb - 55:37

I	need	to	jump	on	something	else.	But	I	think	one	thing	about	the	code
quality	discussion	that's	going	on	is	we	should	try	to	check	for	just	at	a
high	level	because	I	think	some	code	might	get	rewritten	for	Nakamoto
and	there	might	be	certain	libraries	that	we	start	using	versus	the	existing
code.	So	I	think	that	discussion	just	in	terms	of	sequencing	maybe	should
happen	first	because	it	would	be	a	waste	of	time	and	effort	if	we	are	trying
to	clean	up	that	depth	on	code	that	ends	up	like	getting	thrown	away.

Mårten - 56:08

Right.

Muneeb - 56:08

So	I	think	just	a	quick	comment	there	and	then	I	heard	WASM	here	and	I
wanted	to	propose	that	earlier	when	were	having	that	clarity	VM
discussions	that	is	that	going	to	be	vASm?	Because	I	think	it	should	be	if
it's	possible	because	I	think	I	don't	want	to	open	like	a	can	of	worms,	but	I
heard	the	term	and	I'm	very	curious.	I	would	be	to	explore	that	more.
Maybe	there's	a	separate	meeting	for	a.

Brice	Dobry - 56:34

Deeper	dive	on	it.

Jesse	Wiley - 56:37

Great.

Will	Corcoran - 56:39

So	you	probably	saw	there's	like	six	more	pages	of	questions	to	get
through.

Will	Corcoran - 56:46

And	normally	I	was	going	to	kick	it	off	to	go	and	turn	the.

Will	Corcoran - 56:55

Conversation	on	Tuesday	to	green	team	topics,	but	I	think	that	we	need	to
keep	digging	into	this	seems	very	top	of	mind.	It's	going	to	help	with	the
testing	and	hardening	work	stream.	Serology,	to	your	point,	I'm	going	to
take	these	slides	and	the	conversation	we	just	had	and	start	to	spill	this
down	into	some	potential	concrete	tasks	and	action	items	that	we	can	take
from	this.	I	think	that	this	is	super	important	and	I	guess	we	want	to	make
sure	that	we're	not	setting	anyone	off	on	a	goose	chase	too	quickly	and
we'll	complete	the	conversation	and	hopefully	pick	this	up.	We	might	take
next	Tuesday	and	next	Thursday	on	this	topic,	and	that	will	really	help	us
go	into	the	sprint	plan	for	Sprint,	too.

Will	Corcoran - 57:57

But	I	wanted	to	show	you	my.

Will	Corcoran - 57:59

Cool	Green	team	slide	before	I	wasted	it.

Jesse	Wiley - 58:04

All	right.

Will	Corcoran - 58:05

Anything	that	anyone	wants	to	say	before	we	part	ways?

Jesse	Wiley - 58:12

Yes,	Jesse?

Will	Corcoran - 58:13

Sorry,	I	didn't	get	to	yeah,	jump	in.

Jesse	Wiley - 58:15

Yeah.

Jesse	Wiley - 58:15

So	it	hasn't	been	mentioned,	but	this	very	much	goes	to	quality	of	life.	The
current	logging	output	that	we	have	is	horrible.	It's	been	a	pet	peeve	of
mine	since	Specs	2.0	launched	a	while	back.	I	would	love	to	see	better
logging,	more	informative	logging,	and	I	think	that	would	help	a	lot	of
other	areas	as	well.	Today,	it's	very	confusing.	If	you	have	a	problem	and
you	have	to	look	at	the	logs,	usually	what	I	do	is	I	dig	into	the	code	based
on	the	log	message.	The	log	message	just	doesn't	really	tell	me	what's
happening.

Jesse	Wiley - 59:01

Thanks.	Yeah.

Will	Corcoran - 59:04

So	I	will	be	taking	the	firefly	notes	that	gets	transcribed	from	this,	and	I
think	a	lot	of	stuff	is	thrown	out	there,	like,	really	just	trying	to	find	the
signal	on	this	and	hopefully	just	keep	us	moving	in	the	next	meeting	on
Tuesday.	Seems	like	we're	surfacing	a	lot	of	really	important	things.	It's
just	a	matter	of	making	sure	that	everyone	feels	like	we're	converging	on
the	right	protocol	in	order	to	move.

Will	Corcoran - 59:34

About	improving	this	situation.

Will	Corcoran - 59:40

But	been	a	lot	of	fun.

Will	Corcoran - 59:43

I	will	see	you	all	soon.

Jesse	Wiley - 59:49

Yes.	Thank	you.

